Article ID Journal Published Year Pages File Type
7054197 International Journal of Heat and Mass Transfer 2018 16 Pages PDF
Abstract
In the present study, swirling coaxial confined impinging turbulent air jets issuing from a novel designed nozzle is studied experimentally. Heat transfer characteristics and pressure distribution on the impingement plate are analyzed. Experiments have been conducted at different dimensionless nozzle-to-plate distances (H/D = 0.5, 1.0, 1.5, 2.0 and 2.5) and dimensionless flow rates (Q∗ = 0.25, 0.50 and 0.75) for a constant total flowrate of 1.33 × 10−3 m3 s−1 (80 L/min). The results show that the flowrate ratio improves the uniformity of the heat transfer through the impingement surface and increases the average Nusselt number. Also, the intensity of convective heat transfer is shown to enhance significantly with decreasing nozzle-to-plate distance. With regards to the pressure distribution, subatmospheric regions occur on the impingement plate. Contribution of swirl is also compared against the pure circular impingement jet condition (Q∗ = 0.0).
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,