Article ID Journal Published Year Pages File Type
7054829 International Journal of Heat and Mass Transfer 2018 8 Pages PDF
Abstract
The application of artificial neural network to analyze the pulsating nanofluids heat transfer and pressure drop in the spirally coiled tube with magnetic field are presented. Four different training algorithms of Levenberg-Marquardt Backwardpropagation (LMB), Scaled Conjugate Gradient Backpropagation (SCGB), Bayesian Regulation Backpropagation (BRB), and Resilient Backpropagation (RB) are applied to adjust errors for obtaining the optimal ANN model. The results obtained from the artificial neural network are compared those from the present experiment. It is found that the Levenberg- Marquardt Backpropagation algorithm gives the minimum MSE, and maximum R as compared with other training algorithms. Based on the optimal ANN model, the majority of the data falls within ±2.5%, ±5% of the Nusselt number and friction factor, respectively. The obtained optimal ANN has been applied to predict the thermal performance of the spirally coiled tube with magnetic field.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,