Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7054844 | International Journal of Heat and Mass Transfer | 2018 | 12 Pages |
Abstract
This experimental study presents the parametric analysis for the round pin-finned heat sinks subjected to steady heat densities for effective and reliable cooling of mobile electronic devices. Phase change material (PCM) namely paraffin wax is adopted as energy storage material and aluminum made round pin-fins are selected as thermal conductivity enhancers (TCEs). A constant volume fraction of 9% of round pin-fins is selected with pin diameter of 2mm,3mm and 4mm and input heat flux was provided from 1.6kW/m2 to 3.2kW/m2 with an increment of 0.4kW/m2. Three volume fractions of Ï=0.0,Ï=0.5 and Ï=1.0 of PCM amount are poured in each configuration of pin-finned heat sinks. A heat sink with no fin is chosen as a reference heat sink to quantify the effect of PCM and TCEs. The thermal performance of PCM filled heat sinks are analyzed to explore the effect of volumetric fractions of PCM, heat densities, pin diameter on latent heat phase, enhancement in operation time, heat capacity and thermal conductance. Three reference set point temperatures (SPTs) are chosen and results have evidenced that a 3mm pin diameter heat sink has best thermal performance.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Adeel Arshad, Hafiz Muhammad Ali, Shahab Khushnood, Mark Jabbal,