Article ID Journal Published Year Pages File Type
7055964 International Journal of Heat and Mass Transfer 2016 10 Pages PDF
Abstract
Hydrodynamic focusing of particles is numerically studied by the immersed boundary - lattice Boltzmann method. Particle focusing entropy is proposed to quantitatively characterize processing performance and final results of hydrodynamic focusing. Simulations of hydrodynamic focusing in several straight microchannels are carried out to evaluate versatility of the focusing entropy. Time evolutions of focusing entropies and particle trajectories are analyzed contrastively. The results demonstrate that the focusing entropy is an effective scale to measure particles ordering degree and hydrodynamic focusing performance. Higher ordering degree determines lower focusing entropy, which indicates better focusing performance. Channel cross section, particle rigidness and channel Reynolds number are three major factors influencing focusing dynamics and final results. Rectangular microchannel is more advantageous than circular and square ones in hydrodynamic focusing. Particles of different rigidness in rectangular microchannel can be separated significantly with the flow mediation. Increasing channel Reynolds numbers can lead to higher efficiency and better focusing performance.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,