Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7056071 | International Journal of Heat and Mass Transfer | 2016 | 9 Pages |
Abstract
Supercritical carbon dioxide (SCO2) is a promising working fluid for the cryogenic refrigeration, air-condition and heat pump systems. The present study sets up a SCO2-water test loop to study the heat transfer performance of SCO2 in a double pipe heat exchanger. The effects of SCO2-side pressure, mass flux and buoyancy force as well as water-side mass flux are investigated. It is found that the total and SCO2-side heat transfer coefficients reduce as the SCO2-side pressure increases. The peak total and SCO2-side heat transfer coefficients appear at a higher temperature than the pseudo critical temperature. The water-side mass flux has a larger effect on the total heat transfer coefficient compared to the SCO2-side mass flux in the studied cases. The contribution of buoyancy force to the heat transfer performance is large at the small SCO2-side mass flux and it becomes smaller as the SCO2-side mass flux increases. The SCO2-side pressure and water-side mass flux have little effect on the buoyancy force. A heat transfer correlation that includes the effect of buoyancy force is obtained by fitting the experimental data with genetic algorithm.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Ting Ma, Wen-xiao Chu, Xiang-yang Xu, Yi-tung Chen, Qiu-wang Wang,