Article ID Journal Published Year Pages File Type
7058534 International Journal of Heat and Mass Transfer 2013 8 Pages PDF
Abstract
This paper describes a numerical modeling tool designed to conduct explicit simulations of thermal spallation at the grain-scale. The model uses an Eulerian-Godunov scheme to simulate solid and fluid mechanical behavior, permitting both inter- and intra-granular fracture. Simulations conducted with the model illustrate how differences in rock properties, microstructural geometry and mineral volume fractions, combined with variations in thermal and mechanical loading conditions, influence spallation at the grain scale. We discuss the implications of these results on the processes controlling thermal spallation of rock, in particular, the role of micropores in the onset and extent of spallation.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,