| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 705917 | Electric Power Systems Research | 2008 | 18 Pages |
This paper addresses the self-scheduling problem of determining the unit commitment status for power generation companies before submitting the hourly bids in a day-ahead market. The hydrothermal model is formulated as a deterministic optimization problem where expected profit is maximized using the 0/1 mixed-integer linear programming technique. This approach allows precise modelling of non-convex variable cost functions and non-linear start-up cost functions of thermal units, non-concave power-discharge characteristics of hydro units, ramp rate limits of thermal units and minimum up and down time constraints for both hydro and thermal units. Model incorporates long-term bilateral contracts with contracted power and price patterns, as well as forecasted market hourly prices for day-ahead auction. Solution is achieved using the homogeneous interior point method for linear programming as state of the art technique, with a branch and bound optimizer for integer programming. The effectiveness of the proposed model in optimizing the generation schedule is demonstrated through the case studies and their analysis.
