Article ID Journal Published Year Pages File Type
7059188 International Journal of Heat and Mass Transfer 2012 9 Pages PDF
Abstract
Silica gel/water adsorption cooling systems suffer from size, performance and cost limitations. Therefore, there is a need for new adsorbent materials that outperform silica gel. Metal organic frameworks (MOFs) are new micro-porous materials that have extraordinary porosity and uniform structure. Due to the lack of published data that characterise MOF/water adsorption, this paper experimentally investigates the adsorption characteristics of HKUST-1 (Cu-BTC (copper benzene-1,3,5-tricarboxylate), C18H6Cu3O12) and MIL-100 (Fe-BTC (Iron 1,3,5-benzenetricarboxylate), C9H3FeO6) MOFs compared to silica gel RD-2060. The adsorption characteristics of Silica gel RD-2060, HKUST-1 and MIL-100 were determined using an advanced gravimetric dynamic vapour sorption analyser (DVS). Results showed that HKUST-1 performed better than silica gel RD-2060 with an increase of water uptake of 93.2%, which could lead to a considerable increase in refrigerant flow rate, cooling capacity and/or reducing the size of the adsorption system. However, MIL-100 MOF showed reduced water uptake comparable to silica gel RD-2060 for water chilling applications with evaporation at 5 0C. These results highlight the potential of using MOF materials to improve the efficiency of water adsorption cooling systems.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,