Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7060378 | International Journal of Multiphase Flow | 2014 | 9 Pages |
Abstract
This paper describes an experimental setup which allows the detailed investigation of CIWHs in horizontal pipes with 1.4° declination. On basis of 185 experiments, conclusions regarding the probability of CIWHs, the height of pressure peaks and the position of nucleation sites of steam implosion are presented. Important results are the identification of critical parameter combinations (injection flow rate and degree of subcooling) for CIWH incidents with high probabilities and high pressure values as well as the determination of a criterion for exclusion. Further the distribution regarding the origin of water hammer effects, respectively the location of slug collision, is determined in dependency on the degree of subcooling. The accurate description of the experimental setup and experimental outcome provides a reliable basis for future simulations and calculations. In the first example a model concept is presented, which focuses on the underlying phase distribution. This model is the first step to a more reliable prediction and prevention of condensation induced water hammers in the future.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
C. Urban, M. Schlüter,