Article ID Journal Published Year Pages File Type
7060472 International Journal of Multiphase Flow 2014 16 Pages PDF
Abstract
Downwards co-current gas-liquid annular flows were studied experimentally and characterized. An advanced optical laser-based measurement technique, namely Planar Laser-Induced Fluorescence (PLIF), was used for the visualization of the annular flow over a range of liquid Reynolds numbers ReL=306-1532 and gas Reynolds numbers ReG=0-84600. Four distinct flow regimes, namely the 'dual-wave', 'thick ripple', 'disturbance wave' and 'regular wave' regimes, have been identified based on qualitative information and a consequent quantitative analysis that provided information on the film thickness, interface and wave statistics, and gas entrainment into the liquid film. The mean film thickness data are generally in good agreement with previous studies. Evidence suggests that the turbulent gas phase affects strongly the shape of the interface, and that the mechanism for gas entrainment into the liquid film is strongly reliant on the existence of large-amplitude waves.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,