Article ID Journal Published Year Pages File Type
7061175 Journal of Non-Newtonian Fluid Mechanics 2016 25 Pages PDF
Abstract
Modern computational rheology techniques are used to interpret an experimental observation, which has remained unresolved for over four decades. The simple flow in question involved the rotation of a solid sphere in an infinite expanse of non-Newtonian elastic liquid. Under some conditions, Giesekus observed an interesting secondary flow. This added an 'inertial' secondary flow near the rotating sphere to the well-understood 'slow-flow' features observed and predicted by others in the 1960s. By employing a Phan-Thien/Tanner (PTT) constitutive model and moving away from the restriction of 'slow-flow', we show that it is possible to predict numerically the inertial vortex observed by Giesekus.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , ,