Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7062838 | Biomass and Bioenergy | 2018 | 13 Pages |
Abstract
Hydrodeoxygenation (HDO) of bio-oils obtained from intermediate pyrolysis with hot vapor filtration was investigated over Ru/C and NiCu/Al2O3 catalysts as a function of several parameters: feedstock (beech wood, wheat straw), pyrolysis temperature, catalyst and hydrotreatment temperature. Beech wood was found to be a suitable feedstock for HDO due to its low heteroatom content, whereas the high sulfur content in the wheat straw bio-oil caused irreversible poisoning of the catalysts. Ru/C generally consumed more hydrogen than NiCu/Al2O3, showing higher hydrogenation/HDO activity with higher selectivity towards alcohols and hydrocarbons, whereas NiCu/Al2O3 resulted in a higher concentration of ketones. The pyrolysis temperature affected the fragmentation degree; higher temperatures resulted in a higher quality pyrolysis oil with low oxygen mass fraction, but with decreased mass yield. By varying the hydrotreatment temperature (80, 150, 250, 350â¯Â°C), different classes of compounds were converted and different deoxygenation degrees were achieved. Overall the results indicate that intermediate pyrolysis with hot vapor filtration is a valid alternative to the more commonly used fast pyrolysis for decentralized (or small-scale) applications, especially for heterogeneous feedstocks with high ash content.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Process Chemistry and Technology
Authors
Chiara Boscagli, Marco Tomasi Morgano, Klaus Raffelt, Hans Leibold, Jan-Dierk Grunwaldt,