Article ID Journal Published Year Pages File Type
7065530 Biomass and Bioenergy 2013 10 Pages PDF
Abstract
We find that achieving a positive energy balance will require technological advances and highly optimised production systems. Aspects that will need to be addressed in a viable commercial system include: energy required for pumping, the embodied energy required for construction, the embodied energy in fertilizer, and the energy required for drying and de-watering. The conceptual and often incomplete nature of algae production systems investigated within the existing literature, together with limited sources of primary data for process and scale-up assumptions, highlights future uncertainties around micro-algae biofuel production. Environmental impacts from water management, carbon dioxide handling, and nutrient supply could constrain system design and implementation options. Cost estimates need to be improved and this will require empirical data on the performance of systems designed specifically to produce biofuels. Significant (>50%) cost reductions may be achieved if CO2, nutrients and water can be obtained at low cost. This is a very demanding requirement, however, and it could dramatically restrict the number of production locations available.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, ,