Article ID Journal Published Year Pages File Type
7066351 Bioresource Technology 2018 33 Pages PDF
Abstract
Gluconobacter oxydans can be efficiently used to produce 3-hydroxypropionic acid (3-HP) from 1,3-propanediol (1,3-PDO). However, the enzymes involved remain unclear. In this study, transcription analysis of two mutants of strain DSM 2003, obtained by UV-mutagenesis, revealed that membrane-bound alcohol dehydrogenase (mADH) and membrane-bound aldehyde dehydrogenase (mALDH) might be the main enzymes involved. Through deletion and complementation of the genes adhA and aldh, mADH and mALDH were verified as the main enzymes responsible for 3-HP production. Then mALDH was verified as the rate-limiting enzyme in 3-HP production. Since that overexpression of mADH had no effect on 3-HP production, whereas overexpression of mALDH increased 23.6% 3-HP production. Finally, the 3-HP titer of 45.8 g/L and the highest productivity 1.86 g/L/h were achieved when the two mutants DSM 2003/adhAB and DSM 2003/aldh were mixed at a ratio of 1:2 (cell density) and used as whole cell catalysts for 3-HP production.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , , ,