Article ID Journal Published Year Pages File Type
7067042 Bioresource Technology 2018 32 Pages PDF
Abstract
The present study describes the use of metabolic engineering to achieve the production of R,R-2,3-butanediol (R,R-2,3-BD) of ultra-high optical purity (>99.99%). To this end, the diacetyl reductase (DAR) gene (dud A) of Paenibacillus polymyxa ZJ-9 was knocked out via homologous recombination between the genome and the previously constructed targeting vector pRN5101-L′C in a process based on homologous single-crossover. PCR verification confirmed the successful isolation of the dud A gene disruption mutant P. polymyxa ZJ-9-△dud A. Moreover, fermentation results indicated that the optical purity of R,R-2,3-BD increased from about 98% to over 99.99%, with a titer of 21.62 g/L in Erlenmeyer flasks. The latter was further increased to 25.88 g/L by fed-batch fermentation in a 5-L bioreactor.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , , , , ,