Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7067508 | Bioresource Technology | 2018 | 8 Pages |
Abstract
Anoxygenic phototrophic bacteria (APB) pay a key role in biogeochemical cycles, and it can convert light energy to chemical energy by photosynthesis process. Photosynthetic microbial fuel cell (photo-MFC) is regarded as a promising energy-harvesting technology, which is also applied to environment treatment in recent years. The previous studies show that photo-MFC with APB have higher power putout than other bioelectrochemical systems. However, photo-MFC with APB is not reviewed due to some limited factors in the development process. In this review, photo-MFC with APB is treated according to its electron transfer pathways, the current understanding, APB strains, application, influence of substrates, and economic assessment. Meanwhile, knowledge of photosynthesis components and electron transfer pathways of APB is crucial for developing new energy and easing the serious energy crisis. Moreover, some new insights (the optimization of light source and self-sustaining bioelectricity generation) are proposed for the future explorations.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Process Chemistry and Technology
Authors
Xiang Qi, Yiwei Ren, Peng Liang, Xingzu Wang,