Article ID Journal Published Year Pages File Type
7067933 Bioresource Technology 2018 10 Pages PDF
Abstract
Pressurized entrained-flow pyrolysis of Chlorella vulgaris microalgae was investigated. The impact of pressure on the yield and composition of pyrolysis products were studied. The results showed that the concentration of H2 in bio-gas increased sharply with increasing pyrolysis pressure, while those of CO, CO2, CH4, and C2H6 were dramatically decreased. The concentration of H2 reached 88.01 vol% in bio-gas at 900 °C and 4 MPa. Higher pressures promoted the hydrogen transfer to bio-gas. The bio-oils derived from pressurized pyrolysis were rich in nitrogen-containing compounds and PAHs. The highest concentration of nitrogen-containing compounds in bio-oil was achieved at 800 °C and 1 MPa. Increasing pyrolysis pressure promoted the formation of nitrogen-containing compounds such as indole, quinoline, isoquinoline and phenanthridine. Higher pyrolysis pressures led to increased sphericity, enhanced swelling, and higher carbon order of bio-chars. Pressurized pyrolysis of biomass has a great potential for poly-generation of H2, nitrogen containing compounds and bio-char.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , ,