Article ID Journal Published Year Pages File Type
7068670 Bioresource Technology 2018 26 Pages PDF
Abstract
Impact of planetary ball milling on pre-milled wood fiber was studied to improve efficiency of energy consumption for bioconversion using post-harvest forest residuals. Crystalline cellulose decreased from 40.73% to 11.70% by ball milling. Crystallinity index of ball milled wood samples had a negative correlation with glucose yield (r = −0.97, p < .01), xylose/mannose (r = −0.96, p < .01), and a positive correlation with median particle size (r = 0.77, p < .01). Range of glucose yield and xylose/mannose yield for ball milled samples was found to be 24.45-59.67% and from 11.92% to 23.82%, respectively. Morphological changes of the lignocellulosic biomass were observed; the compact fiber bundles of the forest residuals were cleaved to smaller particles with lower aspect ratio with increasing intensity of ball milling. The required energy ranged from 0.50 to 2.15 kWh/kg for 7-30 min of milling respectively.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , ,