Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7069388 | Bioresource Technology | 2017 | 33 Pages |
Abstract
The present work reviews literature describing the re-design of the metabolic pathways of a microbial host using sophisticated genetic tools, yielding strains for producing value-added chemicals including fuels, building-block chemicals, pharmaceuticals, and derivatives. This work employed Escherichia coli, a well-studied microorganism that has been successfully engineered to produce various chemicals. E. coli has several advantages compared with other microorganisms, including robustness, and handling. To achieve efficient productivities of target compounds, an engineered E. coli should accumulate metabolic precursors of target compounds. Multiple researchers have reported the use of pathway engineering to generate strains capable of accumulating various metabolic precursors, including pyruvate, acetyl-CoA, malonyl-CoA, mevalonate and shikimate. The aim of this review provides a promising guideline for designing E. coli strains capable of producing a variety of useful chemicals. Herein, the present work reviews their common and unique strategies, treating metabolically engineered E. coli as a “microbial chassis”.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Process Chemistry and Technology
Authors
Takuya Matsumoto, Tsutomu Tanaka, Akihiko Kondo,