Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7075177 | Bioresource Technology | 2015 | 6 Pages |
Abstract
This study focused on the process development for the d-lactic acid production from cellulosic feedstocks using the Lactobacillus plantarum mutant, genetically modified to produce optically pure d-lactic acid from both glucose and xylose. The simultaneous saccharification and fermentation (SSF) using delignified hardwood pulp (5-15% loads) resulted in the lactic acid titers of 55.2-84.6 g/L after 72 h and increased productivities of 1.77-2.61 g/L/h. To facilitate the enzymatic saccharification of high-load pulp at a fermentation temperature, short-term (⩽10 min) pulverization of pulp was conducted, leading to a significantly improved saccharification with the suppressed formation of formic acid by-product. The short-term milling followed by SSF resulted in a lactic acid titer of 102.3 g/L, an optical purity of 99.2%, and a yield of 0.879 g/g-sugars without fed-batch process control. Therefore, the process presented here shows promise for the production of high-titer d-lactic acid using the L. plantarum mutant.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Process Chemistry and Technology
Authors
Shinji Hama, Shino Mizuno, Maki Kihara, Tsutomu Tanaka, Chiaki Ogino, Hideo Noda, Akihiko Kondo,