Article ID Journal Published Year Pages File Type
707581 European Journal of Control 2011 15 Pages PDF
Abstract

The problem of energy optimization of induction motor (IM) using the concept of a Rotor Field Oriented Control (RFOC) can be treated by an Optimal Control Strategy (OCS). Using OCS, a cost-to-go function can be minimized and subjected to the motor dynamic equations and boundary constraints in order to find rotor flux optimal trajectories. This cost-to-go function consists of a linear combination of magnetic power, copper loss, and mechanical power. The Dynamic equations are represented by using a reduced Blondel Park model of induction motor. From the Hamilton-Jacobi-Bellman (HJB) equation, a system of nonlinear differential equations is obtained, and analytical solutions of these equations are achieved so as to obtain a time-varying expression of a minimumenergy rotor flux. Under RFOC, this analytical solution of rotor flux achieved maximum IM's efficiency and was implemented in transient torque. The current study discusses a saturation model with respect to the rotor flux, which has significant influence in the motor's parameters. A comparative study of simulation results given from conventional and optimized RFOC proves the presented strategy's validity and effectiveness.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering