Article ID Journal Published Year Pages File Type
7077094 Bioresource Technology 2014 9 Pages PDF
Abstract
Thermal decompositions of three components of biomass (cellulose, hemicellulose and lignin) were studied using nonisothermal thermogravimetric analysis (TGA) under both oxidative and inert atmospheres at a heating rate of 10 K min−1. The multi-Gaussian-distributed activation energy model (DAEM)-reaction model was first developed to describe thermal decomposition behaviors of three components. Results showed that the presence of CO2 enhanced the thermal decompositions of three components in high temperature range, but made little difference in low temperature range. Decomposition behaviors under CO2 were analyzed by the two-stage reaction mechanism corresponding to the pyrolysis process of original materials and the gasification process of char. During gasification stage, CO2 was reduced to CO, which provided a possibility of a reduction in greenhouse gas emissions. In addition, more CO was produced, and therefore the thermal value of gas was improved. The findings imply that CO2 gasification technology of biomass has great research significance.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , ,