Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
707913 | European Journal of Control | 2012 | 16 Pages |
By the insertion of a limited communication network in the feedback control loop, this paper investigates the quantized H∞ control problem for discrete-time systems with random packet losses. A new quantized random packet-loss model is proposed and exploited to study the relationship among the packet-loss rate, the upper bound of consecutive packet losses, the quantizer range and the system performance. A convex optimization method is proposed to optimize static quantzier ranges, and further an observer-based H∞ control strategy with minimized static quantizer range is proposed to guarantee the closed-loop system exponentially mean-square stable and with a prescribed H∞ disturbance attenuation level. A numerical example is given to illustrate the effectiveness and the significance of the proposed control method.