Article ID Journal Published Year Pages File Type
7079263 Bioresource Technology 2013 7 Pages PDF
Abstract
This work studied the operating parameters (pH, electrolyte concentration, initial phenol concentration, MFCs connection numbers and mode), adsorption isotherms and kinetics of a novel electrosorption driven by microbial fuel cells (MFC-Sorption) to remove phenol without external electric grid energy supply. It proved that high electrolyte concentration and low solution pH promoted the performance of phenol removal. 3 MFCs connections in series achieved a adsorption capacity of 1.76 mmol/g, which was much higher than that in parallel connection (1.46 mmol/g). Well fitted with Langmuir isotherm, the maximum adsorption capacity by MFC-Sorption and electrosorption was observed 48% and 65% higher than that by conventional adsorption. The phenol removal by MFC-Sorption was supposed to be more suitable for a pseudo-second-order kinetics, and with the increase of initial phenol concentration from 20 mg/L to 300 mg/L, the initial adsorption rate increased 26.99-fold. It concluded that the MFC-Sorption system could cost-effectively remove pollutant of phenol.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , ,