Article ID Journal Published Year Pages File Type
707941 European Journal of Control 2006 13 Pages PDF
Abstract

This paper focuses on the study and the characterization of stability regions for linear systems with delayed states and subject to input saturation through anti-windup strategies. In particular, the synthesis of anti-windup gains in order to guarantee the stability of the closedloop system for a region of admissible initial states as large as possible is addressed. Based on the modeling of the closed-loop system, resulting from the controller plus the anti-windup loop, as a linear time-delay system with a deadzone nonlinearity, stability conditions in an LMI form are stated, for both the delay independent and delay dependent contexts, by using quadratic functionals and a modified sector condition. LMI-based optimization schemes for computing the anti-windup gains that lead to the maximization of the size of the region of stability associated to the closed-loop system are then proposed. The application of the technique and the trade-off between the size of the delay and the region of stability are illustrated by means of numerical examples.

Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering