Article ID Journal Published Year Pages File Type
7079862 Bioresource Technology 2014 5 Pages PDF
Abstract
Fermentation of syngas from renewable biomass, which is part of the syngas platform, is gaining momentum. Here, the objective was to evaluate a proof-of-concept bioprocessing system with diluted ethanol and acetic acid in actual syngas fermentation effluent as the substrate for chain elongation into the product n-caproic acid, which can be separated with less energy input than ethanol. Chain elongation is performed with open cultures of microbial populations (reactor microbiomes) as part of the carboxylate platform. The highest concentration of n-caproic acid of ∼1 g L−1 was produced at a pH of 5.44 and a production rate of 1.7 g L−1 day−1. A higher n-butyrate production rate of 20 g L−1 day−1 indicated that product toxicity was limiting the chain elongation step from n-butyric acid to n-caproic acid. This result shows that the syngas and carboxylate platforms can be integrated within a biorefinery, but that product separation is necessary.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , ,