Article ID Journal Published Year Pages File Type
7080907 Bioresource Technology 2013 8 Pages PDF
Abstract
This work presents the experimental kinetic data and the fractal modeling of sugarcane bagasse steam treatment and enzymatic hydrolysis. Sugarcane bagasse (50 wt% moisture) was pretreated by autohydrolysis at 210 °C for 4 min. Acid catalysis involved the use of 9.5 mg g−1 of H2SO4 or H3PO4 in relation to the substrate dry mass at these same pretreatment conditions. Unwashed, water-washed and alkali-washed substrates were hydrolyzed at 2.0 wt% using 8 and 15 FPU g−1 (108.22 and 199.54 mg/g) total solids of a Celluclast 1.5 L and Novozym 188 mixture (Novozymes). The fractal kinetic modeling was used to describe the effect of pretreatment and both washing processes on substrate accessibility. Water and/or alkali washing was not strictly necessary to achieve high hydrolysis efficiencies. Also, the fractal model coefficients revealed that H3PO4 was a better pretreatment catalyst under the experimental conditions used in this study, resulting in the most susceptible substrates for enzymatic hydrolysis.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , ,