Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7082851 | Bioresource Technology | 2013 | 7 Pages |
Abstract
The Bacillus fusiformis (BFN) strain and its biodegradation of phenol when iron-based nanoparticles such as nanoscale zero-valent iron (nZVI) and Ni/Fe nanoparticles (Ni/Fe) were present at different pH values (6.0, 8.0, and 3.0) were investigated. The growth of BFN and its biodegradation of phenol accelerated in the presence of nZVI and Ni/Fe both at pH 8.0 and pH 6.0. The H2 generated by the corrosion of iron can be used as an electron donor and source of energy for growing BFN. However, only nZVI improved the biodegradation of phenol at pH 3.0, which is most likely due to the increasing medium pH value resulting from the generation of OHâ as a result of iron corrosion. The images from scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) demonstrated that these iron-based nanoparticles adhered to the surface of BFN, but no significant change in the morphology of BFN was observed.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Process Chemistry and Technology
Authors
Ye Kuang, Yan Zhou, Zuliang Chen, Mallavarapu Megharaj, Ravendra Naidu,