Article ID Journal Published Year Pages File Type
710331 IFAC-PapersOnLine 2016 6 Pages PDF
Abstract

The performance of predictive control strategies often degrades over time due to growing plant-model mismatch. Closed-loop performance restoration typically requires some form of model maintenance to reduce model uncertainty. This paper presents a stochastic predictive control approach with integrated experiment design for nonlinear systems with probabilistic modeling uncertainties. The integration of predictive control with experiment design enables enhancing the information content of closed-loop data for online model adaption. The presented approach considers control-oriented experiment design to ensure adequate model adaptation (in probability) in terms of an admissible control performance level. The stochastic optimal control approach is demonstrated on a continuous bioreactor case study.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,