Article ID Journal Published Year Pages File Type
7106881 Progress in Organic Coatings 2015 6 Pages PDF
Abstract
Functional bamboo surfaces with reversibly tunable wettability have become much sought after because of their usefulness in sustainable material protection strategies and industrial applications. In this paper, the hybrid ZnO/bamboo surfaces with reversibly light-switchable wettability between superhydrophobicity and superhydrophilicity were successfully prepared via a hydrothermal method at low temperature. The bamboo substrates served as adhesion, and the well-aligned ZnO nanosheet arrays (WZNA) were deposited on the bamboo surfaces after a hydrothermal process. A subsequent chemical treatment with octadecyltrichlorosilane (OTS) led to a superhydrophobic surface with a water contact angle (WCA) up to 153°. Under UV irradiation, the WCA decreased gradually, and the surface eventually became superhydrophilic because of hydroxyl absorption on the ZnO surfaces. The wetting behavior of the WZNA can be reversibly switched between superhydrophilic and superhydrophobic via alternation of UV exposure for 12 h and dark storage for 10 days.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , , ,