Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7108971 | Automatica | 2018 | 8 Pages |
Abstract
In many applications, and in systems/synthetic biology, in particular, it is desirable to solve the switching problem, i.e., to compute control policies that force the trajectory of a bistable system from one equilibrium (the initial point) to another equilibrium (the target point). It was recently shown that for monotone bistable systems, this problem admits easy-to-implement open-loop solutions in terms of temporal pulses (i.e., step functions of fixed length and fixed magnitude). In this paper, we develop this idea further and formulate a problem of convergence to an equilibrium from an arbitrary initial point. We show that the convergence problem can be solved using a static optimization problem in the case of monotone systems. Changing the initial point to an arbitrary state allows building closed-loop, event-based or open-loop policies for the switching/convergence problems. In our derivations, we exploit the Koopman operator, which offers a linear infinite-dimensional representation of an autonomous nonlinear system and powerful computational tools for their analysis. Our solutions to the switching/convergence problems can serve as building blocks for other control problems and can potentially be applied to non-monotone systems. We illustrate this argument on the problem of synchronizing cardiac cells by defibrillation.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Aivar Sootla, Alexandre Mauroy, Damien Ernst,