Article ID Journal Published Year Pages File Type
7109685 Automatica 2015 13 Pages PDF
Abstract
The purpose of this paper is to study the realization theory of quantum linear systems. It is shown that for a general quantum linear system its controllability and observability are equivalent and they can be checked by means of a simple matrix rank condition. Based on controllability and observability a specific realization is proposed for general quantum linear systems in which an uncontrollable and unobservable subspace is identified. When restricted to the passive case, it is found that a realization is minimal if and only if it is Hurwitz stable. Computational methods are proposed to find the cardinality of minimal realizations of a quantum linear passive system. It is found that the transfer function G(s) of a quantum linear passive system can be written as a fractional form in terms of a matrix function Σ(s); moreover, G(s) is lossless bounded real if and only if Σ(s) is lossless positive real. A type of realization for multi-input-multi-output quantum linear passive systems is derived, which is related to its controllability and observability decomposition. Two realizations, namely the independent-oscillator realization and the chain-mode realization, are proposed for single-input-single-output quantum linear passive systems, and it is shown that under the assumption of minimal realization, the independent-oscillator realization is unique, and these two realizations are related to the lossless positive real matrix function Σ(s).
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,