Article ID Journal Published Year Pages File Type
7113706 European Journal of Control 2018 12 Pages PDF
Abstract
We deal with the wave equation with assigned moving boundary (0 < x < a(t)) upon which Dirichlet-Neuman boundary conditions are satisfied, here a(t) is assumed to move slower than light and periodically. We give a feedback which guarantees the exponential decay of the energy. The proof relies on a reduction theorem by Ammari et al. (2017) [1] and Yoccoz (1984) [13]. At the end we give a remark on the moving-pointwise stabilization problem.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,