Article ID Journal Published Year Pages File Type
7116290 ISA Transactions 2018 12 Pages PDF
Abstract
Trajectory tracking control for helicopters, which are widely used in severe situations such as military and rescue missions, is a challenging field of research. In helicopter system, the stability problem and predefined trajectories tracking are main challenges, especially in the presence of external disturbances and dynamic model uncertainties. Hence, a robust control design is needed for tracking the desired references. There has been a lot of motivation for solving these problems with simpler methods and also reducing the couplings in the helicopter system to achieve better performance, as the presented paper attempts to fill these gaps. This paper focuses on designing control laws for two-degree of freedom helicopter system while assuring the closed-loop stability. A nonlinear disturbance observer-based control (NDOBC) is designed for attenuating the effects of exogenous disturbances. Trajectory tracking controller and nonlinear disturbance observer are formulated in the form of two linear matrix inequality (LMI) problems. The closed-loop system stability, including controller and observer, is investigated by Lyapunov theorem. The effectiveness of the proposed design for tracking the trajectories (vertical flight and pitch angle rotor blade) and disturbance estimation is verified by simulation results.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,