Article ID Journal Published Year Pages File Type
7116442 ISA Transactions 2018 11 Pages PDF
Abstract
Traditional kernel principal component analysis (KPCA) based nonlinear process monitoring method may not perform well because its Gaussian distribution assumption is often violated in the real industrial processes. To overcome this deficiency, this paper proposes a modified KPCA method based on double-weighted local outlier factor (DWLOF-KPCA). In order to avoid the assumption of specific data distribution, local outlier factor (LOF) is introduced to construct two LOF-based monitoring statistics, which are used to substitute for the traditional T2 and SPE statistics, respectively. To provide better online monitoring performance, a double-weighted LOF method is further designed, which assigns the weights for each component to highlight the key components with significant fault information, and uses the moving window to weight the historical statistics for reducing the drastic fluctuations in the monitoring results. Finally, simulations on a numerical example and the Tennessee Eastman (TE) benchmark process are used to demonstrate the superiority of the proposed DWLOF-KPCA method.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,