Article ID Journal Published Year Pages File Type
7117927 Materials Science in Semiconductor Processing 2018 10 Pages PDF
Abstract
Diamond is known as an ultimate material because of its superior properties and it is expected to be employed in next-generation power electronic devices. Progress in epitaxial growth and fabrication techniques such as p- and n-type doping control with low compensation and surface treatment have improved the performance of power devices. High forward-current density and long-term stability have been achieved for Schottky barrier diodes operating at 400 °C. Fast turn-off operation with low loss and a high blocking capability of > 10 kV have also been realized. In addition, high blocking voltages of more than 2 kV have been achieved for switching devices such as metal-semiconductor field-effect transistors (MESFETs) and metal-oxide semiconductor FETs. To maximize device performance up to the material limit requires the development of fabrication techniques such as selective area doping, lithography, etching, formation of diamond/oxide interfaces and also defect reduction. Here, the current status of semiconductor diamond technology is reviewed.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
,