Article ID Journal Published Year Pages File Type
711815 IFAC-PapersOnLine 2015 7 Pages PDF
Abstract

A nonlinear adaptive controller is proposed for the exhaust gas recirculation system on large two-stroke diesel engines. The control design is based on a control oriented model of the nonlinear dynamics at hand that incorporates fuel flow and turbocharger speed changes as known disturbances to the exhaust gas recirculation. The paper provides proof of exponential stability for closed loop control of the model given. Difficulties in the system include that certain disturbance levels will make a desired setpoint in O2 unreachable, for reasons of the physics of the system, and it is proven that the proposed control will make the system converge exponentially to the best achievable state. Simulation examples confirm convergence and good disturbance rejection over relevant operational ranges of the engine.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics