Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7118216 | Materials Science in Semiconductor Processing | 2018 | 9 Pages |
Abstract
Graphitic carbon nitride (g-C3N4) is a well-known photocatalyst. In this work, the NO removal efficiency of g-C3N4 irradiated under various light sources is explored. For achieving high productivity and activity photocatalyst, the pyrolysis temperature is adjusted from 450 °C to 600 °C. All prepared g-C3N4 are put into a transparent reaction box one by one to remove the NO with the initial concentration of 1000 ppb level in air flow under real indoor illumination of three light resources: metal halide lamp, LED lamp and high pressure sodium lamp. According to the photocatalytic reaction results, the NO removal ratio of g-C3N4 synthesized under 500 °C can reach to 29.26% under the irradiation of metal halide lamp, overwhelming that of g-C3N4 irradiated under other light sources. Several characterization methods were adopt to analyze the photocatalytic reaction mechanism and the micro structures of g-C3N4 prepared from melamine. Because of the conduction band potential difference between g-C3N4 and melem, heterojunction of melem and g-C3N4 can form the convention-type charge transfer, which greatly reduce the combination ratio of photogenerated electrons and holes, thus enhance the photocatalytic activity of g-C3N4 under the irradiation of metal halide lamp indicating why the g-C3N4 synthesized under 500 °C possesses the best NO removal efficiency among these samples. In addition, compared with other lamps, metal halide lamp is proved to be the most suitable light resource to motivate g-C3N4 because of its relatively concentrated light intensity. The present work provide us new perspectives for selecting suitable light resources and proper synthesis conditions for the generation of g-C3N4 to achieve better air purification performance in tunnels and indoors.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Electrical and Electronic Engineering
Authors
Zhenzhen Lu, Dong Liu, Zhiyuan Yang, Jianting Zhou,