Article ID Journal Published Year Pages File Type
7118382 Materials Science in Semiconductor Processing 2016 6 Pages PDF
Abstract
Solid state semiconductor sensitized solar cells are a very active research subject in emerging photovoltaic technologies. In this work, heterojunctions of antimony sulfide-selenide (Sb2(SxSe1−x)3) solid solution as the absorbing material and cadmium sulfide coated titanium dioxide (TiO2/CdS) as the electron conductor have been developed with solution deposition methods such as spin-coating, successive ionic layer adsorption and reaction (SILAR), and chemical bath deposition. In particular, CdS has been deposited on mesoporous TiO2 layers by SILAR deposition, followed by the chemical deposition of Sb2(SxSe1−x)3. It was found that by increasing the number of CdS SILAR deposition, both the open circuit voltage Voc and the short circuit current density Jsc of the Sb2(SxSe1−x)3 sensitized solar cells had been increased from 153 to 434 mV and 0.77-9.73 mA/cm2, respectively. This improvement was attributed to the fact that the presence of the CdS on TiO2 surface reduces the formation of undesired Sb2O3 and promotes a better nucleation of the Sb2(SxSe1−x)3 during the chemical bath deposition. The best result was obtained for the solar cell with 30 cycles of CdS which produced a Voc of 434 mV, a Jsc of 9.73 mA/cm2, and a power conversion efficiency of 1.69% under AM1.5 G solar radiation.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , ,