Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7119216 | Materials Science in Semiconductor Processing | 2015 | 9 Pages |
Abstract
The g-C3N4 was synthesized by a hydrothermal method and the g-C3N4/Ag3PO4 composites were prepared by a ordinary precipitation method. Microstructures, morphologies and optical properties of the as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The results showed that the Ag3PO4 nanoparticles were dispersed on the surface of the flake-like g-C3N4, and the heterojunction was formed on the interface. The g-C3N4/Ag3PO4 (2Â wt%) photocatalyst presented the highest photocatalytic activity for organic dye methylene blue (MB) degradation, and its photocurrent intensity was approximately 2 times than that of the pure Ag3PO4. The g-C3N4/Ag3PO4 (2Â wt%) photocatalyst also exhibited photocatalytic performance in the decomposition of colorless antibiotic ciprofloxacin (CIP). The capture experiment confirmed that holes acted as the main active species during the photocatalytic reaction.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Electrical and Electronic Engineering
Authors
Hui Xu, Haozhu Zhao, Yanhua Song, Wei Yan, Yuanguo Xu, Hongping Li, Liying Huang, Sheng Yin, Yeping Li, Qi Zhang, Huaming Li,