Article ID Journal Published Year Pages File Type
7119312 Materials Science in Semiconductor Processing 2015 9 Pages PDF
Abstract
NiO is a p-type semiconductor with wide band gap energy. In this study, nickel oxide nanofibers were fabricated by sol-gel electrospinning followed by high temperature calcination, using two sacrificial polymeric binders. Poly(2-ethyl-2-oxazoline) (PEtOx) in water and styrene-acrylonitrile random copolymer (SAN) in N,N- dimethylformamide (DMF) along with nickel (II) acetate tetrahydrate (NATH), as metal oxide precursor, were the two distinct polymeric systems used in this study. The morphological and structural properties of NiO fibers obtained from the aforementioned systems were compared with each other. The degradation behavior of the sacrificial polymeric binder imparted a significant effect on the properties of the obtained NiO fibers. The grain sizes and the activation energies for grain growth of NiO fibers from two systems were different. The non-stoichiometric NiO fibers obtained from the SAN/NATH system had a better ferromagnetic behavior as compared with that produced from the PEtOx/NATH system. This non-stoichiometry made a difference also in the optical band gap energies of the NiO nanofibers.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, ,