Article ID Journal Published Year Pages File Type
7121955 Measurement 2018 6 Pages PDF
Abstract
The discontinuous, non-causal and instantaneous changes due to a measurement that appear in quantum mechanics (QM) theory are not consistent with a classical understanding of physical reality, but are completely confirmed by experiments. Relative measurement theory explains why. This paper presents the first formal development of an experimental measurement which includes the uncertainty due to calibration and resolution. The uncertainty due to calibration and resolution, previously considered experimental artifacts, is shown to be equal to the uncertainty that appears in QM theory and experiment. When the calibration to a reference and resolution effects are considered, all the QM measurement discontinuities are consistent with classical explanations.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
,