Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7123083 | Measurement | 2016 | 20 Pages |
Abstract
This research addresses multi criteria modeling and optimization procedure for Gas Metal Arc Welding (GMAW) process of API-X42 alloy. Experimental data needed for modeling are gathered as per L36 Taguchi matrix. Model inputs include work piece groove angle as well as the five main GMAW process parameters. The proposed back propagation neural network (BPNN) simultaneously predicts weld bead geometry (WBG) and heat affected zone (HAZ). Image processing technique along with Bridge Cam and AWS gauges are used to take accurate measurements of WBGs and HAZs. The adequacy of the developed BPNN is established through comparisons against measured process outputs. Measurements indicate that the BPNN model simulates GMAW process with average errors of 0.33 to 0.82%. Next, the BPNN model is implanted into a particle swarm optimization (PSO) algorithm to simultaneously optimize HAZ and WBG characteristics. The hybrid BPNN-PSO determines process parameters values and groove angle so as a desired WBG is achieved while HAZ is minimized. Verification tests demonstrate that the proposed BPNN-PSO is quite efficient for in multi-criteria modeling and optimization of GMAW.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
M. Azadi Moghaddam, R. Golmezergi, F. Kolahan,