Article ID Journal Published Year Pages File Type
7123764 Measurement 2016 25 Pages PDF
Abstract
Feature extraction and class discrimination are two key problems for fault diagnosis of rotating machinery. Firstly, multi-scale higher order singular spectrum analysis (MS-HO-SSA) method is presented and the multi-scale higher order singular spectrum entropy (MSHOSSE) is defined as feature to reveal the non-Gaussian and nonlinear characteristic for the vibration signals from rotating machinery with local faults. Secondly, GA-VPMCD method is presented by combination genetic algorithm (GA) with conventional variable predictive model based class discriminate (VPMCD) approach. Lastly, an intelligent fault diagnosis model based on MS-HO-SSA and GA-VPMCD is put forward and utilized for rotor fault diagnosis. The experimental results show that MS-HO-SSA method is more effective for feature extraction and the GA-VPMCD provides better performance than conventional VPMCD and LSSVM.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,