Article ID Journal Published Year Pages File Type
7126350 Measurement 2014 24 Pages PDF
Abstract
A novel intelligent fault diagnosis model based on multi-kernel support vector machine (MSVM) with chaotic particle swarm optimization (CPSO) for roller bearing fault diagnosis is proposed. Multi-kernel support vector machine is a powerful new tool for roller bearing fault diagnosis with small sampling, nonlinearity and high dimension. Chaotic particle swarm optimization is developed in this study to determine the optimal parameters for MSVM with high accuracy and great generalization ability. Moreover, the feature vectors for fault diagnosis are obtained from vibration signal that preprocessed by time-domain, frequency-domain and empirical mode decomposition (EMD) and the typical manifold learning method LTSA is used to select salient features. The experimental results indicate that this proposed approach is an effective method for roller bearing fault diagnosis, which has more strong generalization ability and can achieve higher diagnostic accuracy than that of the single kernel SVM or the MSVM which parameters are randomly extracted.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,