Article ID Journal Published Year Pages File Type
7130370 Optics & Laser Technology 2014 11 Pages PDF
Abstract
The O2(1Δ)/I2 mixing process is one of the most important steps in chemical oxygen-iodine laser (COIL). Based on the chemical fluorescence method (CFM), a diagnostic system was set up to image electronically excited fluorescent I2(B3П0) by means of a high speed camera. An optimized data analysis approach was proposed to analyze the mixing process of supersonic oxygen-iodine parallel streams, employing a set of qualitative and quantitative parameters and a proper percentage boundary threshold of the fluorescence zone. A slit nozzle bank with supersonic parallel streams and a trip tab set for enhancing the mixing process were designed and fabricated. With the diagnostic system and the data analysis approach, the performance of the trip tab set was examined and is demonstrated in this work. With the mixing enhancement, the fluorescence zone area was enlarged 3.75 times. We have studied the mixing process under different flow conditions and demonstrated the mixing properties with different iodine buffer gases, including N2, Ar, He and CO2. It was found that, among the four tested gases, Ar had the best penetration ability, whilst He showed the best free diffusion ability, and both of them could be well used as the buffer gas in our experiments. These experimental results can be useful for designing and optimizing COIL systems.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , , , , , ,