Article ID Journal Published Year Pages File Type
713055 IFAC Proceedings Volumes 2013 6 Pages PDF
Abstract

In some applications it is necessary to estimate derivatives of probability densities defined on the positive semi-axis. The quality of nonparametric estimates of the probability densities and their derivatives are strongly influenced by smoothing parameters (bandwidths). In this paper an expression for the optimal smoothing parameter of the gamma kernel estimate of the density derivative is obtained. For this parameter data-driven estimates based on methods called “rule of thumb” and “cross-validation” are constructed. The quality of the estimates is verified and demonstrated on examples of density derivatives generated by Maxwell and Weibull distributions.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics