Article ID Journal Published Year Pages File Type
7130962 Optics & Laser Technology 2013 6 Pages PDF
Abstract
We report on the fabrication of superluminescent diodes (SLD) from a graded bandgap quantum well intermixed (QWI) material obtained by an infrared laser rapid thermal annealing (IR Laser-RTA) technique. The processed semiconductor wafer consisted of an InGaAs/InGaAsP/InP (001) QW laser heterostructure originally emitting at 1.55 μm. The combined beams of a 150 W laser diode operating at 980 nm and a 30 W Nd:YAG laser operating at 1064 nm are used to heat the sample. While the laser diode is used for back-side heating of the wafer, the Nd:YAG laser beam is swept along the sample surface, resulting in temperature gradient changing in the direction perpendicular to the scan. This contactless RTA approach, allowed to obtain a graded bandgap material that was employed for the fabrication of SLD devices with a broadened emission bandwidth. The lasing effect in a series of 3 mm long broad area injection diodes was suppressed by tilting their facets by 7.5° with respect to the [110] direction. The best SLD devices had their FWHM (full-width-at-half-maximum) emission increased by 33% in comparison to the FWHM of 36 nm observed for devices made from the as grown material at an equal output power of 0.8 mW.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , ,