Article ID Journal Published Year Pages File Type
7131805 Optics and Lasers in Engineering 2018 7 Pages PDF
Abstract
To precisely measure the whole-surface characterization of freeform progressive addition lenses (PALs), considering the multi-optical-axis conditions is becoming particularly important. Spherical power and astigmatism (cylinder) measurements for freeform PALs, using a Hartmann-Shack wavefront sensor (HSWFS) are proposed herein. Conversion formulas for the optical performance results were provided as HSWFS Zernike polynomial expansions. For each selected zone, the studied PALs were placed and tilted to simulate the multi-optical-axis conditions. The results of two tested PALs were analyzed using MATLAB programs and represented as contour plots of the spherical equivalent and cylinder of the whole-surface. The proposed experimental setup can provide a high accuracy as well as a possibility of choosing 12 lines and positions of 193 measurement zones on the entire surface. This approach to PAL analysis is potentially an efficient and useful method to objectively evaluate the optical performances, in which the full lens surface is defined and expressed as the contour plots of power in different regions (i.e., the distance region, progressive region, and near region) of the lens for regions of interest.
Related Topics
Physical Sciences and Engineering Engineering Electrical and Electronic Engineering
Authors
, , , , , , , ,