Article ID Journal Published Year Pages File Type
7133355 Sensors and Actuators A: Physical 2018 35 Pages PDF
Abstract
In this study, atomic force microscopy (AFM) imaging has been used to reveal the preferential deposition of organic thin-films on patterned nanoantenna array surfaces - identifying the localised formation of both monolayer and multilayer films of octadecanethiol (ODT) molecules, depending on the concentration of the solutions used. Reliable identification of this selective deposition process has been demonstrated for the first time, to our knowledge. Organic thin-films, in particular films of ODT molecules, were deposited on plasmonic resonator surfaces through a chemi-sorption process - using different solution concentrations and immersion times. The nanoantennas based on gold asymmetric-split ring resonator (A-SRR) geometries were fabricated on zinc selenide (ZnSe) substrates using electron-beam lithography and the lift-off technique. Use of the plasmonic resonant-coupling technique has enabled the detection of ODT molecules deposited from a dilute, micromolar (1 μM) solution concentration - with attomole sensitivity of deposited material per A-SRR - a value that is three orders of magnitude lower in concentration than previously reported. Additionally, on resonance, the amplitude of the molecular vibrational resonance peaks is typically an order of magnitude larger than that for the non-resonant coupling. Fourier-transform infrared (FTIR) spectroscopy shows molecule specific spectral responses - with magnitudes corresponding to the different film thicknesses deposited on the resonator surfaces. The experimental results are supported by numerical simulation.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , , ,